Contributions of Sediments to Lake Tahoe from Eroding Watersheds

Andrew Simon, Ron Bingner, Eddy Langendoen and Robert Wells

National Sedimentation Laboratory

Issues

- •Concerns over the clarity of Lake Tahoe from finegrained/colloidal materials
- Previous anecdotal evidence that source could be channel materials
- Studies from a range of physiographic regions show that streambank materials are the dominant source of sediment in eroding channel systems

Approach for Lake Tahoe Watersheds

- Determine bulk loadings at 38 sites with historical flow and sediment-transport data (by size class).
- Perform RGA's at 300+ sites
- Determine upland loadings using AnnAGNPS
- Determine channel contributions using **CONCEPTS** (minimum of 3 streams) and direct comparison of measured sections
- Analyze modeled and historic data to determine what combination of watershed and channel conditions result in greatest loadings (prioritization of watersheds) USDA

Past and Future Loadings

DETERMINED USING:

- 1. Historical Transport Data and Direct Comparisons (38 sites)
- 2. AnnAGNPS for Upland & Tributary Contributions (minimum of 3 watersheds)
- 3. CONCEPTS for Main Channels

 Contributions (minimum of 3 watersheds)

USDA

AGNPS OVERVIEW

- DEVELOPMENT OF WATERSHED BOUNDARIES FOR STREAMS, STREAM NETWORK, AND SUBDRAINAGE AREAS
- WATERSHED LANDUSE DESCRIPTION
- OEVELOPMENT OF AnnAGNPS WEATHER DATABASE
- PRODUCTION OF LOADINGS FOR USE WITH CONCEPTS
- IDENTIFY UPLAND SOURCES WITHIN THE WATERSHEDS
- DEVELOPMENT OF RECURRENCE INTERVALS FOR USE WITH THE DEVELOPMENT OF BACKGROUND CONDITIONS

CONCEPTS Conservational Channel Evolution and Pollutant Transport System

Input:

- **Channel geometry**
- Composition of bed and bank materials
- Erosion resistance and shear strength of bed and bank materials
- Rates of flow and sediments entering the channel

Output:

- Changes in channel geometry
- Time series of hydraulic variables and sediment loads and concentrations

Obtaining Effective Discharge to Compare Local and "Background" Transport Rates in the Sierra Nevada

Definition Sketch of Effective Discharge

From Wolman and Miller, 1960.

Fig. 7.5 — Effective discharge determination from sediment rating and flow duration curves. In Stream Corridor Restoration: Principles, Processes, and Practices, 10/98. Interagency Stream Restoration Working Group (FISRWG)(15 Federal agencies of the US).

Ecoregions of EPA Region IX

Calculation of Effective (Q_{1.5}) Discharge

National Sedimentation Laboratory

Sediment Load at Q_{1.5}

National Sedimentation Laboratory

Range of Median Sediment Yields: EPA Region IX

Range of Effective Sediment Yields

Very Preliminary Sediment Transport Estimates at Q_{1.5} (High Rates)

Load (T/D)

Yield (T/D/km²)

Blackwood	118	Third Creek	10
Third Creek	116/44	Second Creek	8
Upper Truckee	59/55	Ward	6/2
Ward	52	Blackwood	4
Trout	38		

Range of Effective Concentrations

Basins for Watershed and Channel Modeling

- 1. Ward Creek
- 2. General Creek
- 3. Upper Truckee River
- 4. Logan House Creek
- 5. Incline Creek

Ward Creek

- 40 Surveyed cross sections
- Bed and bankmaterial samples
- Geotechnical testing

• RGAs and cross-section surveys

Channel Condition: Ward Creek

Reaches undergoing bank erosion

General Creek

RGAs and cross section surveys

- 31 Surveyed cross sections
- Bed and bank-material samples
- Geotechnical testing

Channel Condition: General Creek

Reaches undergoing bank erosion

Typical cut bank along lower reach

Upper Truckee River

- 41 Surveyed cross sections
- Bed and bank-material samples
- Geotechnical testing

Channel Condition: Upper Truckee River

Reaches undergoing bank erosion

Typical cut bank along lower reach

Loganhouse Creek

- 38 Surveyed cross sections
- Bed and bankmaterial samples
- Geotechnical testing

RGAs and cross-section surveys

Channel Condition: Loganhouse Creek

Watershed boundary

Typical well-vegetated banks

Incline Creek

- 41 Surveyed cross sections
- Bed and bank-material samples
- Geotechnical testing

Channel Condition: Incline Creek

Reaches undergoing bank erosion

Detailed Surveying and RGA Sites

- 1. Ward Creek
- 2. General Creek
- 3. Blackwood Creek
- 4. Upper Truckee River
- 5. Logan House Creek
- 6. Edgewood Creek
- 7. Incline Creek

Matching 2002 with mid-1980's surveys (Located about 95% of monuments)

Example of Contribution from Channel (and contribution of fines)

88% Banks
12% Bed

Channel Condition: Blackwood Creek

Reaches undergoing bank erosion

Cut bank along middle reach

Project Status as of December 2002 (Work started in September 2002)

- about 300 surveyed cross sections in 7 watersheds
- about 600 samples/particle counts of bed and bank material
- 125 samples analyzed for particle-size distribution
- about 150 geotechnical tests of streambank materials
- 25 erodibility tests of bank-toe materials
- Transport curves and flow frequency calculated for 38 sites in the watershed
- Distribution of suspended-sediment transport rates calculated for Sierra Nevada Ecoregion
- GIS layers obtained, analyzed and modified for AnnAGNPS modeling

Plans for Next Quarter (Jan. – March 2003)

- Determine means of sorting watersheds by characteristics and analyze differences in historical transport rates
- •Work up all survey and geotechnical testing data
- Analyze all particle-size and unit-weight samples
- Obtain remainder of historical cross-section data
- Overlay historical with 2002 survey data and calculate channel contributions
- Assign geotechnical data to surveyed cross sections
- Input data into CONCEPTS
- Complete AnnAGNPS GIS work and validate flow simulations

